We will be sampling the Mandelbrot set in a rectangular grid and rendering each point as a square pixel. Doing this requires making some decisions.

  1. how many pixels? N::Int -> 1000x1000
  2. location, scale, and orientation? (center::Complex, middle_left::Complex)
  3. max number of iterations? maxiter::Int -> unknown function of unknown variables. "distance from the set" with "the right" metric
  4. stop condition? stop()::Function{Complex -> boolean}
  5. color? color()::Function{IteratorState -> RGB}

Some recipes for generating pictures

  1. External rays (vector)
  • Parameter
  • Angle
  • Radius of 'infinity'
  • Segment resolution
  • Depth
  • Colors
  1. External Binary decomposition (raster)
  • Parameter
  • Grid size
  • Grid location
  • Radius of 'infinity'
  • Angle of decomposition
  • Max iter ~ depth
  • Colors
  1. Escape Time (raster)
  • Parameter
  • Grid size
  • Grid location
  • Max iter ~ depth
  • Escape radius ~ radius of 'infinity'
  • Colors
  1. Inverse Iterate (vector)
  • Parameter
  • Start point
  • Number of generations

-question: should all generations be plotted? or just the last? does it matter?

Combos

From angle: Boundary of the Julia set with inverse iterates

Hubbard tree inside

External rays outside

From angle: Binary decomp outside

Binary decomp inside