using SLHQuantumSystems
using SecondQuantizedAlgebra
using Symbolics

mode = MechanicalMode("")

(Ω, m,  Γ) = rnumbers(parameternames(mode)...)
b = Destroy(FockSpace(:mass),operatornames(mode)[1])
paramdict = Dict(zip(nameof.([Ω,m,Γ]),[Ω,m,Γ]))
slh = SLH("mass",[mode],paramdict,["in"],["out"],[1],[Γ*b],Ω*b'*b)

ss = StateSpace(slh)
qss = toquadrature(ss)
StateSpace("mass", SLHQuantumSystems.Subspace[MechanicalMode("")], Dict{Symbol, SymbolicUtils.BasicSymbolic{Real}}(:m => m, :Ω => Ω, :Γ => Γ), ["in"], ["out"], SymbolicUtils.BasicSymbolic[(-0.5 + 0.0im)(Γ^2) 1 / m; -m*(Ω^2) (-0.5 + 0.0im)(Γ^2)], Any[(-0.7071067811865475 - 0.0im)Γ 0; 0 (-0.7071067811865475 + 0.0im)m*Γ*Ω], Any[(1.414213562373095 + 0.0im)Γ 0; 0 ((1.414213562373095 + 0.0im)Γ) / (m*Ω)], ComplexF64[0.9999999999999998 + 0.0im 0.0 + 0.0im; 0.0 + 0.0im 0.9999999999999998 + 0.0im])

This page was generated using Literate.jl.